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Abstract

This paper analyzes the importance of heterogeneity in banks’ funding on the trans-
mission of monetary policy shocks. Banks fund themselves with liabilities that dif-
fer in their maturity structure. Empirically, I find that banks whose liabilities have
longer maturity are less responsive to monetary shocks. I interpret this finding us-
ing a heterogeneous-banks macroeconomic model with endogenous default and funding
choices. The maturity choice arises from banks’ inability to freely raise debt, either by
limited commitment or regulation. Long-term liabilities enable these banks to avoid
states with low liquidity, but at a higher funding cost. Using this framework, I assess
the aggregate implications of monetary shocks and provide quantitative evidence that
the effect of monetary policy depends on the distribution of banks’ funding structure,
which varies over time and depends on the interest level.
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1. Introduction

Understanding the underlying mechanism of monetary policy transmission through banks is
crucial to assessing its magnitude (Kashyap and Stein, 1995, 2000; Drechsler et al., 2017;
Wang et al., 2022). While existing literature has extensively recognized banks’ central role
in transmitting monetary policy, much of the focus has been on their asset compositions
and market structures. By shifting attention to the liability side — specifically, the funding
structure — I provide novel evidence that bank funding maturity has significant implications
for monetary policy transmission.

Empirically, I find evidence that the maturity of banks’ liabilities matters for the trans-
mission of monetary policy. Banks with shorter liability maturities respond more strongly
to policy changes, cutting lending more significantly than banks with longer maturities. To
assess the aggregate implications of bank funding and, thus, their maturity, I develop a quan-
titative framework in which banks dynamically choose their funding and monopolistically
set their lending rates. In the model, these funding choices are driven by financial frictions
that directly influence how banks manage their cash flows. Because banks that are more
financially constrained are also the ones funding their operation with more long-term debt,
a monetary policy tightening actually alleviates their constraints. As a consequence, these
banks relatively increase their lending by one percentage point.

First, I provide empirical evidence on the heterogeneous funding structure of banks. For
this, I construct a panel of banks’ maturity using U.S. commercial banks’ Call Reports data.
The two sources of long-term debt are time deposits and other borrowed money. 1 Around
32% of banks’ funding is from time deposits and other borrowed money. I document that, on
average, banks’ time deposits and other borrowed money banks have a maturity of around
13 months, which banking regulation categorizes as long-term liabilities. I also document
that due to their higher maturity and lack of insurance, this funding is more expensive, with
an average annual rate of 1.36 percentage points higher than deposits.

Second, I empirically examine the heterogeneous response of bank lending to monetary policy
shocks, focusing on the maturity of banks’ liabilities. My approach builds on prior research

1Other Borrowed Money is a Call Report definition for any type of debt that is not a deposit. By
definition, deposits and repos (wholesale inter-banking short-term loans) have zero maturity.
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that investigates cross-sectional differences in banks’ lending responses to policy changes,
such as asset liquidity in Kashyap and Stein (2000) and market power in Drechsler et al.
(2017). These studies aim to uncover mechanisms underlying the transmission of monetary
policy through banks by exploiting the cross-sectional variation. Using unexpected interest
rate changes, I explore the dynamics of bank lending relative to within-bank variations in
liability maturity. I find that banks with liability maturities one standard deviation above
the average increase their lending, in relative terms, by one percentage point.

I develop a macro-finance model to assess the aggregate implications of banks’ liability
structure with endogenous funding choices. The framework is a general equilibrium model
populated by heterogeneous banks using retained earnings and issuing liabilities to finance
loans. There are four key ingredients to the model. First, banks are not committed to
repaying their debt; thus, endogenous default risk limits their borrowing capacity. Second,
banks can finance with deposits and long-term liabilities, which differ in their insured status.
Third, imperfect competition among banks allows them to use their market power when
setting their lending rate. Lastly, capital requirements limit how much of banks’ assets can
be financed using debt.

Maturity choice plays a central role in banks’ funding decisions due to their inability to freely
raise funds. In my model, this funding constraint can arise either exogenously, through
capital requirements, or endogenously, driven by banks’ default decisions. In both cases,
maintaining stable cash flows becomes essential to ensure liquidity and reduce the probability
of default.

Because short-term liabilities, such as deposits, are rolled over each period, banks facing
funding constraints are more vulnerable to states with low liquidity. To mitigate this risk,
constrained banks tend to favor long-term debt. By extending the maturity of their liabil-
ities, banks effectively hedge against idiosyncratic liquidity shocks, ensuring smoother cash
flows over time. However, because these long-term liabilities are not insured, they are ex-
posed to default risk, and consequently, their borrowing rates are significantly higher than
deposits. Therefore, although long-term debt serves as a key tool for managing liquidity risk,
allowing banks to operate under tighter financial constraints while minimizing the likelihood
of default, it comes at a higher funding cost.

The model is calibrated to capture key features of banks’ behavior, including their markup,
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leverage, funding structure, and borrowing rate spreads. The model generates the rich het-
erogeneity in bank funding choices observed in the data, particularly with respect to the
maturity of liabilities. Notably, the model effectively explains two key empirical correlations
that were not explicitly targeted during its calibration. First, it reproduces the positive
correlation between leverage and the maturity of liabilities. Second, the model accounts for
the observed positive relationship between loan losses and maturity. These untargeted cor-
relations highlight the model’s capability to capture the interactions between banks’ funding
decisions and financial constraints. This implies that banks with longer maturity are typically
more financially constrained. Consequently, the distribution of bank funding has important
implications for monetary policy transmission.

To explore the effects of monetary policy on lending and interest rates, I simulate the model’s
response to an unexpected 1% annual increase in the risk-free rate. The model replicates the
heterogeneous response of banks with different debt maturities, aligning with my empirical
findings. Banks with longer-maturity debt are typically more financially constrained. Cru-
cially, these banks experience a substantial decline in the present value of their outstanding
liabilities. This effect of long-term debt increases their equity, thereby relaxing their financial
constraints. The relaxation of these constraints more than offsets the rise in funding costs,
enabling banks with a higher share of long-term debt to expand their lending in response
to the monetary policy shock. Since funding decisions are linked to interest rates (see, for
example, Supera (2021)), they become essential to examine the impact of monetary policy
at various interest rate levels.

To quantify the aggregate implications of maturity, I first compute the aggregate impulse
responses of my model. The model generates a semi-elasticity of loans to lending rates of
−2.48, with an imperfect pass-through to lending rates of 0.83. I then perform a coun-
terfactual experiment using the model to measure the impact of maturity distribution on
aggregate lending. In this scenario, I change the mass of banks in such a way that the
present value of outstanding debt does not change with the shock. My results show that, in
the counterfactual scenario, the decline in lending is 33% larger than the benchmark case.
This highlights the critical role that a decrease in the present value of banks’ debt plays in
easing their funding constraints, enabling them to sustain higher lending levels in response
to a monetary policy shock.
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To illustrate the importance of accounting for banks’ funding structures when evaluating
regulatory changes, I analyze the effects of tighter capital requirements in the model. Under
the benchmark scenario, such requirements lead to higher lending rates, reduced aggregate
lending and leverage, and a significant reduction in bank failure rates. However, these effects
are considerably weaker when banks are restricted to funding themselves exclusively through
deposits. This demonstrates that the broader funding structure, beyond just deposits, plays
a crucial role in determining the impact of regulatory changes on banking outcomes.

In summary, this paper highlights the critical role of banks’ funding structures, particularly
the maturity of their liabilities, in shaping their responses to monetary policy. By incorpo-
rating balance sheet constraints and heterogeneity in funding choices, the model not only
replicates key empirical patterns but also provides new insights into the transmission of
monetary policy through the banking sector. These findings emphasize the importance of
considering the full range of banks’ funding sources when designing monetary policy.

Related Literature

This paper provides an empirical and quantitative analysis of the role of banks’ funding in
transmitting monetary policy. It thereby contributes to four strands of literature.

First, it adds to the vast literature on the interaction of banks and interest rates (Bernanke
and Blinder, 1992; Van den Heuvel et al., 2002; Jiménez et al., 2014; Drechsler et al., 2017,
2021; Wang et al., 2022). While existing empirical evidence supports the link between mon-
etary policy and bank lending, the traditional arguments for this transmission often focus
on regulatory constraints such as bank reserves and capital requirements (Bernanke and
Blinder, 1988; Kashyap and Stein, 1995). In Wang et al. (2022), they propose a structural
estimation of the quantitative impact of banks’ market power on monetary policy transmis-
sion. Building on their framework, I extend their model by adding heterogeneous banks
with endogenous default decisions and characterizing long-term liabilities according to the
data. In contrast to their setup, the stock of outstanding long-term liabilities is crucial to
understanding the aggregate impact of monetary policy, not just because they are unsecured
but because they "hedge" banks against interest rate risk.

Second, this paper contributes to the literature on financial frictions and the transmission
of aggregate shocks. Beginning with the seminal work of Kiyotaki and Moore (1997) and
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Bernanke et al. (1999), the financial accelerator literature has emphasized the role of balance
sheet constraints in amplifying shocks. Over the past decade, in response to the Great
Recession, this framework has been extended to the financial sector (Gertler and Karadi,
2011; He and Krishnamurthy, 2013; Brunnermeier and Sannikov, 2014; Gertler and Kiyotaki,
2015). More recently, some papers have explored the heterogeneous responses of the financial
sector to aggregate shocks (Coimbra and Rey, 2024; Goldstein et al., 2024). While my model
shares their focus on the aggregate transmission of shocks, the key difference lies in the source
of heterogeneity. Rather than arising from differences in leverage, as in their models, my
model’s heterogeneity stems from the composition of banks’ debt, particularly the maturity
structure.

More specifically, this paper relates to the subset of the literature that develops general
equilibrium models with default risk (see, for example, Arellano et al. (2019); Gertler and
Kiyotaki (2015); Ottonello and Winberry (2020); Amador and Bianchi (2024)). In these
models, the absence of a commitment to repay debt constrains the amount of leverage firms
or banks can take on. This leads to the amplification of aggregate shocks due to their
inability to issue debt to smooth these shocks. My model shares this feature, as banks
are subject to leverage constraints. However, it adds a novel dimension by emphasizing
that banks’ limited commitment also compels them to maintain liquidity buffers to absorb
adverse shocks. In my model, these buffers are largely maintained through the issuance of
long-term debt, highlighting that the composition of debt, rather than just its level, is central
to understanding bank liquidity management.

Third, this paper contributes to the growing literature on the aggregate implications of
bank regulation, particularly regarding capital requirements and financial stability (see, for
example, Corbae and D’Erasmo (2021); Begenau and Landvoigt (2022)). They explore how
bank regulation enhances financial stability by influencing banks’ risk-taking and credit-
creation activities. In Corbae and D’Erasmo (2021), although capital regulation enhances
stability, it generates higher market concentration. While in Begenau and Landvoigt (2022),
the change in capital regulation has a positive spillover on shadow banking markets by
reducing their risk-taking, as it reduces the subsidies to commercial banks coming from
deposit insurance.

Building on this literature, my contribution introduces endogenous default decisions and
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funding choices shaped by the frictions banks face. Unlike models that primarily emphasize
deposits, my approach highlights the importance of banks’ cash-flow smoothing motives
and how these interact with capital regulation to shape their balance sheet decisions. This
framework provides a more nuanced understanding of how regulatory changes are transmitted
through the banking sector, with implications for both financial stability and credit markets.

Finally, this paper relates to the literature on default risk and debt maturity (see, for example,
Chatterjee and Eyigungor (2012); Bocola (2016)). In the sovereign default literature, the
choice of debt maturity arises from a trade-off between rollover risk and debt dilution under
limited commitment (Sánchez et al., 2018). In the context of firm dynamics, papers such as
Diamond and He (2014); Crouzet et al. (2016); Crouzet (2017); Dangl and Zechner (2021)
examine how firms manage their maturity structure.

In my model, the fact that deposits are rolled over each period makes banks’ exposure to
rollover risks a central factor in their decision to issue long-term debt. This model also
contributes to the broader literature on how debt maturity shapes the transmission of ag-
gregate shocks, building on examples such as Gomes et al. (2016) for inflation shocks and
Jungherr et al. (2024) for monetary shocks. By focusing on banks’ maturity choices, my
model highlights the importance of debt composition in understanding the propagation of
shocks through the banking sector.

2. Empirical Analysis

This section is structured as follows: First, I demonstrate that the average maturity of time
deposits and other borrowed money exceeds one year, classifying them as long-term debt.
Second, I show that borrowing interest rates are higher for long-term liabilities. The longer
maturity may explain their higher interest rates, as they are not FDIC-insured. Under
default risk, longer maturity contracts become a more expensive source of funding. Finally,
I show that bank lending responds heterogeneously based on the maturity structure of their
liabilities.
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Data Description and Main Definitions

I use U.S. bank-level data from the Uniform Bank Performance Report (UBPR), which covers
all FDIC-insured commercial banks, savings banks, and savings associations. The dataset
includes quarterly Call Reports from each insured bank, standardizing several bank-specific
ratios. 2 I rely on the UBPR for the consistency of its definitions, using quarterly data from
December 2002 to March 2023.

Deposits, comprising checking and savings accounts, are subject to reserve requirements and
are considered a traditional and reliable source of bank funding. Federal Deposit Insurance
Corporation (2024) identifies these liabilities as stable and cost-effective, thanks to FDIC
insurance and the nature of depositors. Since Fed funds purchases and repo operations also
serve as short-term funding sources, I group them with deposits.

Long-term liabilities include time deposits and other borrowed money. 3 These liabilities,
except for small time deposits, are not FDIC-insured, making them more exposed to interest
and credit risks, which contributes to their higher funding costs (Martin et al., 2018).

Aggregate Time Series of Banks Funding

To examine the maturity composition of banks’ time deposits and other borrowed money,
I begin by showing that these liabilities function as long-term debt. Figure 1 displays a
distinct maturity profile for time deposits and other borrowed funds, contrasting sharply
with the shorter maturity of standard deposits and repos.

Throughout the sample period, roughly 65% of time deposits and other borrowed money
mature within one year, with the remaining 35% extending beyond one year —demonstrating
a significant long-term orientation compared to the immediate liquidity of deposits and repos.
A calculation of the average maturity of these liabilities shows that they are indeed long-
term, with an average maturity of 13 months, which, by banking regulation, defines them as
long-term. Thus, for simplicity, I will refer to these liabilities as such.

2For more details on the FFIEC’s UBPR and the construction of these variables, see https://cdr.
ffiec.gov/public/DownloadUBPRUserGuide.aspx.

3Time deposits mainly include certificates of deposit and brokered deposits. Other borrowed money
refers to bank funding sources apart from deposits, such as Federal Home Loan Bank advances and other
borrowings. See FFIEC 031 and FFIEC 041 forms, Schedule RC-M item 5 for details.
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Figure 1: Long-term Liabilities by Maturity

0%

20%

40%

60%

80%

100%

2005q1 2010q1 2015q1 2020q1

Maturity <1 y 1 y<=Maturity<3 y

Maturity >3 y

Notes: The figure plots bank liabilities’ composition by the maturity bracket. The data is from
the U.S. Call Reports covering 2003 to 2023 at the quarterly frequency.

Another essential characteristic of long-term debt is its uninsured status. Figure A.3 in the
appendix breaks down long-term liabilities, showing that approximately 60% consists of large
time deposits (exceeding FDIC insurance limits) and other borrowed money, both of which
are not protected by FDIC insurance. Consequently, long-term debt is exposed to default
risk, adding a risk component compared to insured short-term liabilities.

To illustrate the implications of this default risk on banks’ funding costs, I compare the
average borrowing rates of deposits and long-term liabilities from 2003 to 2023. The average
borrowing rate is calculated by dividing total interest expenses by the quarterly average
stock of each liability type. For reference, the figure also includes the Fed funds rate.

As shown in Figure 2, interest rates for long-term liabilities are significantly higher than
those for deposits, averaging 1.35% over the sample period. In Figure A.2 in the appendix,
I further decompose borrowing rates for deposits and long-term liabilities, highlighting that
increased funding costs for long-term debt are primarily due to other borrowed money, which
is unsecured, while time deposits are partially secured. This suggests that both default risk
and maturity may influence the cost of long-term liabilities.

The longer maturity helps explain the observed difference in borrowing costs between deposits
and long-term liabilities. A combination of default risk, longer maturity, and banks’ inability
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Figure 2: Borrowing Rates
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Notes: The figure plots the average borrowing rate by different liabilities and the Fed fund rate.
The average borrowing rate is measured by the interest expense divided by the quarterly average
stock of the liability. The data is from the U.S. Call Reports covering 2003 to 2023 at the quarterly
frequency.

to commit to limiting future borrowing make long-term debt more expensive due to debt
dilution. 4 However, since banks are not required to roll over long-term debt each period, it
mitigates their liquidity risk relative to deposits, creating a trade-off between these funding
sources.

To highlight the importance of long-term debt for commercial banks, I examine their funding
composition. In the appendix, I present the breakdown of banks’ liabilities into deposits (plus
repos) and long-term debt. Figure A.1 indicates that long-term debt is a substantial funding
source for banks, comprising roughly 35% of total liabilities.

Having established that long-term debt is a prominent funding source for banks, I now
examine the distribution of its maturity across banks. This analysis highlights how long-
term liabilities contribute to significant heterogeneity within the banking sector.

Commercial Banks Maturity

I utilize data from the Call Reports, which provide detailed information on banks’ interest
rate risk exposure. Banks are required to report the maturity of their liabilities across several

4Debt dilution is a well-known issue in the sovereign debt literature; see Chatterjee and Eyigungor (2012).
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predefined brackets: liabilities maturing within one year, between one and three years, and
beyond three years.

By assigning a midpoint to each bracket, I calculate the weighted average maturity of liabil-
ities for each bank. Specifically, I use the following formula to capture the overall maturity
profile:

Mj,t =
∑
b∈B

mbdebtb,j,t
debtj,t

(1)

where mb denotes the mid-point of bracket b, debtb,j,t is the amount of debt in bracket b of
bank j at time t, and debtj,t is the total debt of bank j and time t. Savings and checking
accounts, which I refer to deposits, have zero maturity by definition. This methodology is
based on the approach proposed by English et al. (2018), with a slight modification: my
series is reported in yearly terms, and for the upper brackets, I add a year to the lower
bound of the bracket. 5

I follow a similar procedure to estimate the average maturity of long-term liabilities, which
allows for a direct comparison between overall bank liabilities and the subset of long-term
liabilities.

Table 1 presents summary statistics for the maturities of both overall liabilities and long-term
liabilities. A key takeaway is that while the average maturity of total bank liabilities is less
than a year, long-term liabilities have a significantly longer maturity, averaging around 1.1
years (or approximately 13 months). This is a crucial distinction, as I will refer to liabilities
with a maturity above one year as "long-term".

Table 1: Summary Statistics Maturity

mean std dev p5 p25 p50 p75 p95
Maturity of Liabilities 0.45 0.25 0.11 0.26 0.41 0.60 0.95
Maturity of Long-term 1.14 0.40 0.59 0.84 1.08 1.38 1.87

Notes: Moments for maturity are estimated using the full sample. Maturity construction follows
English et al. (2018) but at yearly terms. The data is from the U.S. Call Reports covering 2002
to 2023 at the quarterly frequency.

5For further details on the methodology, refer to English et al. (2018).
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How does funding maturity affect bank lending?

In this subsection, I investigate how the maturity structure of banks’ liabilities influences
their lending response to monetary policy shocks. Specifically, I study the heterogeneous
pass-through of monetary policy via banks’ funding decisions.

To estimate the dynamics of this heterogeneous response, I apply a Jordà (2005)-style local
projections approach, specified as:

yj,t+1+h − yt = αj,h + αt,h + βh(Mj,t−1 − M̄j)ε
m
t + Γ1Xj,t−1 + ej,t+h (2)

where h ≥ 0 is the horizon of the local projection, αj,h and αt,h are bank and time fixed
effects, respectively, and Mj,t represents the maturity of bank liabilities. The term εmt is the
monetary policy shock constructed by Jarociński and Karadi (2020), purged of information
shocks by zeroing out movements correlated with stock market responses.

My coefficient of interest βh captures the interaction effect of liability maturity on the average
bank-level response to a monetary policy shock. I normalize the within-bank variation by
the sample standard deviation for interpretability. The vector Xj,t−1 of bank-level controls
contains log of total assets, return on assets, the long-term share of liabilities, leverage,
the share of non-performing loans, the share of short-term investments, and the interacted
variable Mj,t.

By demeaning the maturity variable within banks, my approach isolates the effects of chang-
ing liability maturity rather than differences in inherent bank characteristics. If banks exhibit
a specific linear response to monetary policy, the typical approach of interactingMj,t−1 and εmt
might reflect permanent heterogeneity across banks, as discussed in Ottonello and Winberry
(2020). While my economic model assumes banks are ex-ante homogeneous (see Section 3),
in reality, banks may exhibit ex-ante heterogeneity in their sensitivity to monetary policy.
For instance, distinct market risks and differing levels of market power in loan markets can
drive these differences in responsiveness. In sum, demeaning the banks’ maturity ensures
that the estimated impact reflects how individual banks adjust their lending in response to
monetary shocks when they experience atypical liability maturities. This allows for a more
precise view of the role of funding maturity in monetary policy transmission.

Several studies have measured the aggregate response of lending to monetary policy changes.
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Using only Call Reports limits my ability to observe price changes independent of demand
fluctuations, potentially biasing aggregate or average effect estimates. Studies using bank-
firm loan data for Spain, such as Jiménez et al. (2012) and Ivashina et al. (2022), estimate the
semi-elasticity of loans to interbank rates to be −1.39 and −1.88, respectively. For the U.S.
credit market, Bassett et al. (2014) reports a demand elasticity of commercial and industrial
loans around −1.68.

Figure 3 illustrates the impulse response of loans to a 1% shock in the Fed funds rate over
horizon hh. The results from local projections highlight a new insight in the literature: the
maturity structure of banks’ liabilities plays a significant role in moderating the effects of
monetary policy. Specifically, banks with longer-term liabilities exhibit a comparatively lower
sensitivity to policy changes, with each percentage point of the shock yielding about a one-
percentage-point increase in responsiveness. To contextualize these findings, a relative semi-
elasticity one point higher markedly dampens the transmission of monetary policy effects.

Figure 3: Heterogeneous Lending Response to Monetary Shock
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Notes: The figure presents the impulse response of a 1% monetary shock, constructed by Jarociński
and Karadi (2020), based on the local projection approach. The data is from the U.S. Call Reports
covering 2002 to 2023 at the quarterly frequency. The cumulative growth of loan growth is plotted
with a 95 percent confidence interval shown using standard errors clustered at the bank and time
level.

To check if my results are robust, I re-estimate the local projections under different specifi-
cations in Appendix B.3. Although with slight differences, the results are still robust at the
5% significance level. I further check if the maturity of banks’ assets or the maturity gap also
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generates heterogeneous responses to lending with little to no significance. This points to the
lesser significance of interest rate risk, which the evidence Drechsler et al. (2021) supports.

The empirical evidence suggests a correlation between banks’ funding structure and monetary
policy transmission. However, it does not provide insight into the underlying mechanism
behind these patterns observed in the data. To better understand this evidence, I consider an
infinite-horizon equilibrium model of the banking industry with three sectors: entrepreneurs,
households, and banks.

3. Model

In this model, entrepreneurs face a static discrete choice problem when deciding whether to
finance a risky project using bank loans. Households are competitive and can save through
deposits or long-term liabilities. Banks act as intermediaries between households and en-
trepreneurs by accepting funds and providing loans. The economy has a unique final good,
and all variables are in consumption terms of the final good.

In the model banks face several frictions with different implications for transmitting monetary
policy through their financial intermediation. First, imperfect competition in the loan market
leads banks to choose their loan rates to maximize profits. Second, banks are subject to
government regulation. Capital regulation requires banks to optimize their lending and
funding intertemporally to preserve their cash reserves as a buffer against future capital
inadequacy. Third, long-term liabilities are a costly funding source for banks. The higher
cost of long-term liabilities is due to two factors: (i) they have longer maturity; (ii) they are
more exposed to default risk.

The model borrows elements from Corbae and D’Erasmo (2021), which accounts for the
regulatory constraints; Wang et al. (2022), which proposes a dynamic model of the bank’s
market power; and Ottonello and Winberry (2020) for the endogenous default decisions of
banks.

Entrepreneurs

The entrepreneurial sector consists of two-period entrepreneurs who fund themselves through
bank loans. Each entrepreneur belongs to a distinct bank pool, and there is no inter-bank

14



competition or mobility. I call this pool the client pool of bank j.

Each pool contains a unit mass of entrepreneurs, and entrepreneurs are denoted i ∈ [0, 1].
Entrepreneurs are risk-neutral agents who maximize their expected profit, conditional on
their project return. This assumption of market power is in line with recent empirical
evidence that banks’ market power affects the pass-through of monetary policy to the supply
of loans (see, Scharfstein and Sunderam (2016); Drechsler et al. (2017)).

At period t, entrepreneurs borrow one unit of the final good from the banks to purchase
risky projects. The project price is equal to Pt. Thus, the amount of the project purchased
with the bank’s loan equals

kit =
1

Pt

.

The project might return xit unit of dividends per unit of project purchased. xit is the
entrepreneur’s private information and, thus, not observed by the bank. This implies that
banks cannot set different interest rates for their client pool. xit is known at the beginning
of each period t.

Suppose this entrepreneur belongs to a client pool j affected by common probability pjt+1.
Then, in the next period, the project returns (per unit of loan):1 + xit with prob pjt+1

0 with prob 1− pjt+1

(3)

in the successful and unsuccessful states, respectively. The entrepreneur’s gross dividend
return is 1 + xit in the successful state and 0 in the unsuccessful state. The success of an
entrepreneur’s project, which occurs with probability pjt+1. The success or failure of the
project is independent and identically distributed across entrepreneurs and captures the
pool’s not diversifiable risk. 6 This guarantees that the failure rate one each pool will
be equal to pt+1 for the next period. After the project return is realized, the project fully
depreciates.

In this environment, entrepreneurs within a bank pool j cannot move to another bank to
borrow from them. Then, taking the gross lending rate Rj

ℓ,t as given, the entrepreneurs in

6The characterization of this failure rate is similar to Vasicek (2002), which is used for regulation motives.
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that pool will decide whether to finance via bank loans. They must repay Rj
ℓ,t if they borrow

from the bank.

The entrepreneur has limited liability at the project level, so the project return net of interest
payment is bounded from below by zero. Table 2 summarizes the return and costs from the
entrepreneur’s investment problem. Since xit is given for each entrepreneur, their expected
payoff decreases on the loan rate Rj

ℓ,t.

Table 2: Entrepreneur’s Problem (conditional on investing)

Receive Pay Probability
Success (1 + xit)/Pt Rj

ℓ,t pjt+1

Failure 0 min{0, Rj
ℓ,t} 1− pjt+1

Entrepreneurs cannot repay their debt fully if their projects fail. In this case, they will
default on their loans. From the bank’s perspective, these entrepreneurs become delinquent,
and the bank realizes losses on that loan.

Under these conditions, we have that the expected payoff of entrepreneur i, conditional that
they borrow from the bank at rate Rj

ℓ,t, is equal to:

πt(R
j
ℓ,t) = Et

{
pjt+1

[
(1/Pt)(1 + xit)−Rj

ℓ,t

]}
.

Assuming that if the entrepreneurs do not invest in the asset, their profit equals zero. Then,
entrepreneurs maximize the following

U e = max
h∈{0,1}

hπ(Rj
ℓ,t),

where h denotes the discrete choice of investing in the asset. Therefore, entrepreneurs invest
in the asset if and only if

(1/Pt)(1 + xit)−Rj
ℓ,t ≥ 0, (4)

the return per asset amount is higher than the lending rate.

Loan Demand. Since there is no inter-bank competition or mobility in the credit market,
each bank j will face a unique loan demand function. Taking the entrepreneurs’ investment
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decision from Equation 4, and the distribution of xi, we can describe bank j’s loan demand
by:

ℓd(Rj
t , Pt) = Prob

(
xit ≥ Rj

ℓ,tPt − 1
)
. (5)

This loan demand is characterized by the marginal entrepreneur, whose idiosyncratic div-
idend equals x⋆ = Rj

ℓ,tPt − 1. Since xi is independently distributed and follows a known
distribution, the loan demand function is characterized by the complementary cumulative
distribution function (ccdf) of x at the point x⋆. Due to this, the loan demand is decreasing
in the asset price Pt and in the loan rate Rj

ℓ,t. Intuitively, as asset prices increase or loan
rates decrease, it becomes less attractive for entrepreneurs to invest independently of their
idiosyncratic dividend.

Households

The economy features a representative household whose lifetime utility is given by

E0

[
∞∑
t=0

βt log(Ct)

]
.

where β is the discount factor and Ct is their consumption. The household owns all banks
in the economy. I study the perfect foresight transition paths with respect to aggregate
states, so the stochastic discount factor and the real interest rate are linked through the
Euler equation for savings, Λt+1 =

1
Rf,t

, where Rf,t is the risk-free rate set by the monetary
authority.

The household saves by buying deposits, D, and long-term liabilities, B, from banks. They
receive dividends from the banks and are taxed lump-sum. They are also endowed with y

units of goods each period. They fund new banks by transferring some equity, denoted by
n̄, so they can start their operation.

Banks

There is a constant unit measure of banks owned by the household. Banks are indexed by
j ∈ [0, 1]. A manager operates at most one bank and decides entry, default, loans, and
funding. The manager’s objective is to maximize the lifetime stream of dividend payments
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divt using the manager’s discount factor

E0

[
∞∑
t=0

σtΛtdivt

]
,

where Λt represents the household stochastic discount factor at time t, and σ ∈ (0, 1] is
the myopia parameter from the bank manager. This assumption introduces the possibility
of agency problems through managerial myopia when σ < 1 along the lines of Corbae and
D’Erasmo (2021). To obtain a well-defined distribution of banks, I need a condition that
guarantees σΛt+1Rf,t < 1, a standard assumption in incomplete market models, where Rf,t

is the risk-free rate.

Assets: To model the solvency risk of a bank, the first consideration is its assets. Bankers
invest in loans with an agreed-upon interest, denoted by Rj

ℓ,t. Let ℓt−1 be the loan amount
financed by bank j in the previous period at interest rate Rj

ℓ,t−1. Then, bank j’s assets are
given by the equation:

ajt = pjtR
j
ℓ,t−1ℓt−1 (6)

In the above equation, pjt is the mass of repaying loans. Defaulted loans are realized as losses
on the bank’s balance sheet. The variable 1 − pjt captures the loan charges-offs. I assume
that the process for log(pjt) is persistent and follows a truncated AR(1) process.

Resources. Bankers use their cash-on-hand (n), deposits (d) and long-term liabilities (b)
to finance new loans ℓ(Rj

ℓ,t, Pt) at interest rate Rj
ℓ,t.

Assuming that long-term liabilities have a longer maturity than a period, a fraction λ of its
principal is paid back every period while 1 − λ remains outstanding. Debt holders receive
a coupon payment of c for the outstanding amount. Deposits are short-term contracts that
fully mature every period.

Conditional on their liabilities and loan portfolio, we can determine the bank’s cash-on-hand
at each period, which is given by:

nj
t = ajtω

j
t − djt − (λ+ c)bjt − ψ. (7)

Here, dj is the deposit payout inherited from a previous period, (λ+ c)bjt is the payment on
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maturing long-term liabilities plus the coupon, ajt is the bank’s assets, ωj
t is an idiosyncratic

shock affecting the bank’s assets valuation, and ψ is a fix operating cost. 7 I assume this
shock is i.i.d. across time and banks, and it follows a log-normal process, log(ωj

t ) ∼ N(0, ηω).
This valuation shock is a simplified way of capturing the fact that banks have non-performing
loans on their balance sheets that have yet to be realized as losses.

At the beginning of the period, the bank’s equity is given by their cash-on-hand minus the
amount outstanding of debt discounted at present value, i.e.,

ejt = nj
t − qrfb,t(1− λ)bjt , (8)

where qrfb,t denotes the risk-free price of long-term liabilities. This assumption implies that
when evaluating a bank’s equity at book value, its liabilities are also considered at book
value rather than at market value. This can create discrepancies between the book value
and market value of equity.

Banks use their cash on hand and liabilities to finance new loans, which yields the following
resource constraint:

divjt + ℓd(Rj
ℓ,t, Pt) = nj

t + qd,td
j
t+1 + qb,t(b

j
t+1 − (1− λ)bjt) (9)

Here ℓd(Rj
ℓ,t, Pt) is the loan demand of bank j, which comes from the entrepreneur’s problem

and is described by Equation 5, bjt+1 − (1− λ)bjt is the net issue of long-term liabilities and
djt+1 is the amount of deposits raised. qd,t and qb,t are the pricing of deposits and long-term
liabilities, respectively, endogenously determined as discussed in the following subsection.

Using the cash-on-hand equation 7 and book equity 8, we can determine next period equity
by 8

ejt+1 = ajt+1 − ψ − djt+1 − (λ+ c+ (1− λ)qrfb,t+1)b
j
t+1.

A key friction in the model is the assumption that banks are unable to issue equity, which

7This shock on assets return helps me generate cross-sectional heterogeneity, similar to Ottonello and
Winberry (2020). It is also helpful to match the default rates observed in the data.

8Here I am implicitly assuming that valuation shock, for example, unrealized losses from non-performing
loans, does not interact with the requirements over capital tomorrow.
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necessitates that dividends must always be non-negative, expressed as:

divjt ≥ 0.

This constraint prevents banks from raising equity to substitute deposits or long-term lia-
bilities for funding their lending activities. Additionally, it highlights the limited liability of
banks, as they have the option to default on their debt, resulting in equity holders losing
their entire investment.

The next important ingredient in my model is regulation, namely, capital requirement

ejt+1 ≥ κajt+1. (10)

Equation 10 implies that the bank’s book equity at the beginning of the next period has to
be no smaller than a fraction κ of their total asset. Due to the no-equity investment and the
capital constraints, banks will need to smooth their cash-holding to avoid states with low
liquidity and, thus, default.

Lastly, I follow Title 12, "Banks and Banking", of the Code of Federal Regulations, which
states that proposed dividends cannot exceed a bank’s net income and restrict dividends to

divjt ≤ Et[a
j
t+1 − ℓd(Rj

ℓ,t, Pt)].

A similar assumption is made by Corbae and D’Erasmo (2021). In my setup, it guarantees
that the value function is bounded and concave.

Insurance, Liquidation, Debt Pricing

Households competitively lend resources to banks at the price schedules qd(pt, Rℓ,t, dt+1, bt+1)

and qb(pt, Rℓ,t, dt+1, bt+1).

Banks cannot distinguish between the types of debt on which they default. If they default on
deposits, they must also default on long-term liabilities, and vice versa. The default decision
of the banker is denoted by δ(pt, nt, bt), where (pt, nt, bt) is the bank’s state variables.

One of the differences between deposits and long-term liabilities is due to the lack of insurance
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for the latter. To account for the insurance, I assume there is a priority for guaranteeing
the repayment of banks’ debt holders in case of default, particularly for deposits. 9 The
process occurs as follows: whenever a bank defaults, the deposit holders gain control of the
bank’s assets. In this case, assets are liquidated with a recovery rate given by a parameter
γ ∈ (0, 1).

Banks are required to pay insurance premiums to a regulator, net the recovery on the assets.
The premium is fair and considers the bank’s lending, debt, and default decisions. Conse-
quently, we have a net price on deposits. After the liquidation, the remaining assets are
transferred lump-sum to the household; thus, there is no welfare loss on default.

Since the household holds these liabilities, they are discounted by Λt. Consequently, the
price of deposits, net insurance premium, is

qd(pt, Rℓ,t, dt+1, bt+1) = Et{Λt+1[1− δ(pt+1, nt+1, bt+1)

+ δ(pt+1, nt+1, bt+1)min(1, γωt+1at+1/dt+1)]}

Similarly, the price of long-term liabilities is equal to

qb(pt, Rℓ,t, dt+1, bt+1) = Et{Λt+1[1− δ(pt+1, nt+1, bt+1)][λ+ c+ (1− λ)qb,t+1]}, (11)

where qb,t+1 is the price next period.

I allow for long-term liabilities to be bought back by the banks. In this case, their price is
equal to the risk-free price.

Bankers’ Recursive Problem

Since the banker’s recursive problem is the same across banks, I drop the index j to denote
the bank’s j problem. The variables (p, n, b) summarize the banker’s state space. Bankers
lack commitment, as they can default on their debt obligations. Then, the value of the

9This assumption respects the hierarchy of debt holders according to the FDIC.
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bank’s operation is given by:

V (p, n, b) = max
δ∈{0,1}

(1− δ)V c(p, n, b)

where δ is the default decision of the bank, V c(·) is the continuation value of the banking
operation, and the value for the banker of the banker defaults equals zero.

The continuation value is associated with the following recursive problem:

V c(p, n, b) = max
Rℓ,d′,b′

div + Ep′|p[σΛt+1V (p′, n′, b′)]

s.t. div = n− ℓd(Rℓ, P ) + qdd
′ + qb(b

′ − (1− λ)b) ≥ 0

a′ = p′Rℓℓ
d(Rℓ, P )

e′ ≥ κa′

em = n− qb(1− λ)b

e′ = a′ − ℓd(Rℓ, P )− ψ + em − div + (qd − 1)d′ + (qb − λ− c− (1− λ)qrfb )b′

n′ = a′ω′ − d′ − (λ+ c)b′ − ψ

div ≤ Ep′|p[a
′ − ℓd(Rj

ℓ , P )]

Exit and Entry

Exit from the market is endogenous, depending on the bank’s default decision. The mass of
entrant banks µe equals the mass of exiting banks in each period. A banker is endowed with
n̄ initial equity to start the banking operation and zero debt.

Each new bank inherits a previous bank’s pool of entrepreneurs, thus maintaining the same
distribution of shocks in the economy. This captures that these new banks enter the markets
left vacant by an incumbent bank’s exit.

Project Producer and Monetary Authority

Lastly, I describe the final agents in this economy. The projects are produced by a represen-
tative firm, and the interest rates are set by a monetary authority.

Project Producer. A representative project producer produces a new aggregate project
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using a linear technology, where It is the amount of final goods used to create the project.
Notice that there is a departure from the standard capital producer of Ottonello and Win-
berry (2020) as there is no aggregate stock of the project in period t as it fully depreciates.
They also face some convex adjustment cost given by F (It). The project producer solves

max
It

PtIt − It − F (It)

where Pt denotes the price of the project.

The first-order condition of the problem is such that

Pt = 1 + F ′(It).

Moreover, I assume a variation of the standard function form such that

F ′(It) = χ

(
Lt

L⋆

− 1

)3

where L⋆ is the steady state loan amount. This characterization guarantees that the project
price equals one in the steady state. 10

Monetary Authority. The monetary authority sets the real risk-free interest rate Rf,t

according to
log(Rf,t) = − log(β) + εmt (12)

and εmt is the monetary policy shock.

Equilibrium

I define the equilibrium for this economy in the steady state and the transition to an unex-
pected aggregate shock to interest rate, with perfect foresight on the transition path.

Law of motion of distribution of banks. Before defining the equilibrium, I character-
ize the law of motion of the distribution of banks in the steady state, with an analogous
characterization for the transition path.

10The cubic term deals with the non-linearities of the model by decreasing the effect of small variations
in loans.

23



Consider the set of optimal policies conditional on the states (p, n, b):

R⋆
ℓ (p, n, b), d

⋆′(p, n, b), b⋆′(p, n, b),

where R⋆
ℓ (p, n, b) is the optimal lending rate, d⋆′(p, n, b) is the optimal deposit policy, and

b⋆′(p, n, b) is the optimal long-term liability policy.

Notice that R⋆
ℓ (p, n, b), d

⋆′(p, n, b), b⋆′(p, n, b) can be empty as banks might not satisfy the
non-negative dividend constraint, and, thus, default. If the banker defaults on their debt, a
new bank enters this economy with initial equity n̄ and no long-term liabilities while keeping
the same pool of clients, i.e., the same p. In equilibrium, the mass of entering banks equals
the mass of defaulting, keeping the mass of banks equal to one over time.

Let µ denote the bank distribution of this economy with respect to (p, n, b). The mass of
exiting banks is equal to

µe =

∫
δ⋆(p, n, b)dµ(p, n, b),

where δ⋆ is the default strategy of the bank.

Consider the following notation for the law of motion of net worth:

n′(p′, ω′, p, n, b) = n′(p′, ω′, R⋆
ℓ (p, n, b), d

⋆′(p, n, b), b⋆′(p, n, b)),

which is described in the bank’s problem. I denote the indicator function for the next period
states as

I(p′, ω′, n′, b′|p, n, b) =

1, if (p′, ω′, n′, b′) = (p′, ω′, n′(p′, ω′, p, n, b), b⋆′(p, n, b))

0, otherwise

We can describe the subsequent period distribution of incumbent banks according to:

µ′
i(p

′, n′, b′) =

∫
(1− δ⋆(p, n, b))I(p′, ω′, n′, b′|p, n, b)G(ω′)F (p′ | p)dµ(p, n, b),

where I is an indicator function I described before, G(ω′) and F (p′ | p) are the transition
probabilities of the exogenous states ω and p, respectively. Similarly, the subsequent period
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distribution of entrant banks evolves according to:

µ′
e(p

′, n′, b′) =

∫
δ⋆(p, n, b)I(p′, ω′, n′, b′|p, n̄, 0)G(ω′)F (p′ | p)dµ(p, n, b).

Notice that since the new bank inherits the pool of exiting banks, the entrant distribution
depends on the shock p. Lastly, this economy’s distribution of banks evolve according to:

µ′(p′, n′, b′) = µ′
i(p

′, n′, b′) + µ′
e(p

′, n′, b′).

In this economy, a stationary bank distribution is such that:

µ⋆(p, n, b) = µ′(p, n, b) = µ(p, n, b).

The stationary distribution µ⋆(p, n, b) remains unchanged over time, satisfying the equilib-
rium condition where the inflow and outflow of banks balance out.

Project Market Clearing. The last step before defining the equilibrium is characterizing
the market clearing on the project market. Consider a distribution of operating banks
µ(z, n, b). Like before, denote R⋆

ℓ (z, n, b) the lending rate policy conditional on (z, n, b).
Denote the loan supply of each bank as ℓs(p, n, b) = ℓd(R⋆

ℓ (z, n, b), R
E
K). Since banks can

default, the loan supply mass also accounts for entrant banks. Therefore, we can define the
aggregate loan supply by

Ls =

∫
[1− δ⋆(p, n, b)]ℓs(p, n, b)dµ(p, n, b) +

∫
δ⋆(p, n, b)ℓs(z, n̄, 0)dµ(p, n, b),

the first term is the loan supply of incumbent banks, and the second is the loan supply of
entrant banks.

Finally, the price of the asset today, Pt, must be such that

PtK
′ = Ls, (13)

which is the market clearing condition. Notice that since the economy is in a steady state,
the price of assets is constant and equal to one.
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Definition 1. A stationary competitive equilibrium is a set of value functions V (p, n, b); deci-
sion rules Rℓ(p, n, b), d

′(p, n, b), b′(p, n, b), measure of banks; debt price schedules qd(p,Rℓ, d
′, b′),

qb(p,Rℓ, d
′, b′); borrowing decision ℓ(Rj

ℓ , P ); and prices P such that

• Entrepreneurs maximize their utility, given the interest of their bank Rj
t , consistent

with their utility function and borrowing decision;

• Banks policies for loan rates Rℓ(p, n, b), deposits d′(p, n, b), and long-term liabilities
d′(p, n, b), consistent with their maximization problem;

• Household price defaults competitively and optimizes its decision;

• The distribution of banks is consistent with their decision rules;

• All market clears.

One of the state variables of interest in the distribution of banks according to their state
variables (p, n, b). As previously highlighted during my empirical exercise, banks’ lending
responses are heterogeneous depending on their share of long-term funding. Therefore, ac-
cording to it, the distribution of banks will have aggregate implications for monetary policy
transmission.

4. Model Mechanism

Before delving into the quantitative analysis, I examine the transmission mechanism of mon-
etary policy through banks’ liabilities maturity. This is done by looking at the bank’s
dynamic decisions. The problem is formulated around a bank’s choices of three key decision
variables: the loan interest rate Rℓ, deposits d′, and long-term liabilities b′. I characterize
the equilibrium behavior of banks in terms of the three associated first-order conditions.

For simplicity, I focus on two main constraints, the no-equity and capital constraints, while
abstracting from any debt dilution effects on future bond prices and the iid shock.
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Deposits. The first-order condition with respect to the deposits d′ is(
qd +

∂qd
∂d′

dt+1 +
∂qb
∂d′

(b′ − (1− λ)b)

)
(1 + υdiv)− υcap

− Ep′|p
[
(1− δ(p′, n′, b′))(1 + υ′div + υ′cap)σΛ

′] = 0 (14)

where υdiv and υcap are the Lagrangian multipliers associated with the dividend and capital
constraints, respectively.

This condition illustrates the trade-off between the costs and benefits of deposit funding.
Deposits expand banks’ available resources, thereby relaxing both the resource and divi-
dend constraints. However, they reduce the equity value in the following period, tightening
the capital constraint. This effect, captured by −υcap, can offset the initial relaxation of
resources. As the capital constraint tightens, the Lagrange multiplier −υcap limits deposit
growth. Examining the first-order condition for long-term liabilities reveals why banks facing
stricter financial constraints favor longer-term debt instruments.

Long-term Liabilities. The first-order condition with respect to the long-term Liabilities
b′ is(

qb +
∂qd
∂b′

d′ +
∂qb
∂b′

(b′ − (1− λ)b)

)
(1 + υdiv)− υcap

(
c+ λ+ (1− λ)qrfb

′)
− Ep′|p

[
(1− δ(p′, n′, b′))(1 + υ′div + υ′cap)(c+ λ+ q′b)σΛ

′] = 0 (15)

Like deposits, long-term liabilities ease the resource and dividend constraints but have a
smaller impact on the capital constraint. This difference arises because long-term liabilities
aren’t entirely rolled over, as shown by c + λ + (1 − λ)qrfb

′ ≤ 1. Consequently, banks
with tighter capital constraints are more inclined to finance operations through long-term
liabilities despite their higher cost.
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Loan rate. The first-order condition with respect to the loan rate Rℓ is(
−1 +

∂qd
∂ℓd(Rℓ, P )

d′ +
∂qb

∂ℓd(Rℓ, P )
(b′ − (1− λ)b)

)
(1 + υdiv)

+ υcap(1− κ)p′lowRℓ

1 +
1

∂ℓd(Rℓ,P )
∂Rℓ

Rℓ

ℓd(Rℓ,P )


+ Ep′|p

(1− δ(p′, n′, b′))(1 + υ′div + υ′cap)σΛ
′p′Rℓ

1 +
1

∂ℓd(Rℓ,P )
∂Rℓ

Rℓ

ℓd(Rℓ,P )

 = 0. (16)

here, banks just need to consider the worst-case scenario of credit repayment for the capital
requirement to be valid for all other states; thus, explicitly, I consider the collateral constraint
in the state p′low.

The first component of the equation captures the tightening of the resource and dividend
constraint coming from increasing the bank’s lending, netting the benefit on debt pricing.
Because banks are monopolistic, whenever setting loan rates, they take into account the
effect on their loan demand, as captured by the elasticity ∂ℓd(Rℓ,P )

∂Rℓ

Rℓ

ℓd(Rℓ,P )
. This elasticity

also influences capital constraints, as a larger asset base will relax them. Finally, the last
term captures the bank’s expected marginal revenue along with the associated markup.

To understand the heterogeneous impact of monetary policy on banks, it’s essential to iden-
tify which banks are more dependent on long-term liabilities. The first-order conditions
suggest that banks with tighter collateral constraints rely more heavily on such liabilities for
funding. When a monetary shock occurs, a portion of this debt—specifically 1−λ - remains
outstanding. This debt, issued initially at lower rates with fixed coupon payments, loses
value as it is discounted at a higher rate. Consequently, for a given any given amount of
cash-in-hands, banks experience a positive equity effect as both the market and book values
of their debt obligations declines.

For constrained banks, the combination of holding long-term debt and this equity improve-
ment more than compensates for the rise in funding costs. This dynamic enables these banks
to expand their lending in response to the monetary shock.
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5. Quantitative Analysis

In this section, I explore the quantitative implications of my model. First, I calibrate my
model to match the targeted moments of distribution in the U.S. banking sector. I then
show how the model can match additional moments of the cross-section of banks. Third, I
show that the model can replicate the heterogeneous response to an unexpected interest rate
shock. Lastly, I conduct counterfactual analyses with the model, highlighting the importance
of maturity for the transmission of monetary policy.

Computation

The model described in Section 3 features heterogeneity across banks and important non-
linearities. All nonlinearities arise from the bank’s problem due to the endogenous default
decision and the sometimes binding constraints. Due to these nonlinearities, I rely on global
methods to solve the model (value function iteration). In the transition dynamics, the aggre-
gate state variables, such as asset prices, depend on the distribution of banks µ, an infinite
dimensional object. Therefore, I focus on the transition with perfect foresight. The reason
is that for banks to make their decisions, they just need to know the aggregate price for
projects Pt, which depends on the distribution of banks.

Even after reducing the problem to a perfect foresight transition, the model features three
individual state variables at the bank level: (p, n, b) and three choice variables (Rℓ, d

′, b′) and
is therefore subject to the curse of dimensionality. 11 The algorithm for solving the model
relies on graphics processing units (GPUs) to highly parallelize the solution.

Parameterization

The model calibration involves two steps. Initially, a set of parameters is directly obtained
from the data, followed by estimating a second set using the Simulated Method of Moments
(SMM). As detailed later, the chosen set of moments aims to align with the financial frictions
encountered by banks. It’s important to note that in the model, one period corresponds to
a quarter, meaning that all information presented from this point on is quarterly.

The Uniform Bank Performance Report (UBRP) is my primary source for calibrating the

11In the Appendix C, I cover how I compute the policies and steady-state distribution of banks.
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model. I aggregate commercial bank-level data to the Bank Holding Company (BHC) level. 12

Data on bank failures is collected from FDIC.

I first parameterize the stochastic process of loan losses. 13 I obtain the bank-level gross
loan losses over total loans and then create a variable equal to one minus the gross losses
while removing both time and bank fixed effects. I then estimate the following autoregressive
equation: log(pj,t) = µp + ρp log(pj,t−1) + uj,t, with uj,t ∼ N(0, η2p). Once the parameters µp,
ρp, and ηp are estimated, I discretize the process using the method proposed by Tauchen
(1986), truncating the value for p in such a way that is never above one.

An essential parameter for the model is the average maturity of long-term liabilities. To
obtain this, I use the share of liabilities with a maturity of less than a year, a combination
of time deposits, and other borrowed money. For maturities above one year, I use the total
liabilities information. I construct the weighted average maturity at the bank level and use
the asset-weighted average maturity obtained.

I parametrize the loan demand function by assuming that xit follows a logistic distribution,
resulting in the following functional form for the loan demand:

ld(Rℓ,t, Pt) =
1

1 + exp(α(Rℓ,tPt − 1 + ν))
, (17)

α is the sensitivity of loan demand to interest rate, and ν is the median return on these
projects. 14 α and ν are endogenously calibrated, while Pt is endogenously estimated on the
transition dynamics.

Intuitively, investing becomes more attractive when the asset returns increase. In turn, this
increases the demand for loans, and under this logistic distribution, the demand becomes less
sensitive to loan rates for a given interest rate Rℓ,t. Since aggregate loan supply is directly
associated with the asset’s price, if the loan supply decreases due to a monetary policy, the
loan demand shifts upwards due to the decrease in the asset’s price, offsetting the initial

12Note that the matching between commercial banks and the BHC is done using the relationship table
from the FFIEC. Additional information about the merger process is provided in the Appendix.

13For this part, I utilize the realized gross loan losses, and net loan losses can be negative, which does not
align with the model setup.

14This representation of loan demand is similar to the ones in Wang et al. (2022); Jiang (2023), with the
difference being the aggregate asset price. A similar functional form for loan demand is obtained if I assume
a linear utility function with GED shock.

30



drop.

The last five parameters are the aggregate risk-free rate, recovery rate on assets, coupon rate,
and capital requirement ratio. Because interest rates have implications for the distribution
of long-term liabilities, I take the average Fed fund rates between 2002 and 2023, excluding
observations where the rate was below 20 basis points per year. I take the recovery rate from
the Correia et al. (2023), which finds a recovery for depositors equal to 0.40. The coupon
payment is chosen to match a 5-basis-point interest rate spread between deposits and long-
term liabilities in a risk-free environment. 15 The capital requirement ratio is taken to match
the tier 1 capital ratio of 6%. Table 3 presents the externally calibrated parameters.

Table 3: Fixed Parameters

Parameter Name Source Value
R− 1 Interest Rate Mean Fed Fund Rates 0.6%
µp Mean of Repayment Share Mean of Gross Loans Charge-offs -0.09%
ρp Repayment Share Persistence AC Gross Loans Charge-offs 0.59
ηp SD Repayment Share SD Gross Loans Charge-offs 0.28%
1/λ Maturity Maturity of long-term Liab. 4.57
γ Recovery rate on Assets Correia et al. (2023) 40%
c Coupon Payment Term Premium 0.45%

Notes: Parameters exogenously fixed in the calibration

Moments

In this subsection, I assess whether the model can accurately approximate the targeted and
untargeted moments. I start with the endogenously calibrated parameters in the steady
state. I then describe the targeted moments and their relationships with the banks’ frictions
and present the model fit. Lastly, I present the untargeted moments as external validity of
the model.

Table 4 shows the estimated parameters inside the model. Due to the lack of competition
across banks, the parameter dictating the interest rate sensitivity of the loan demand, α,
is higher than the one estimated by Wang et al. (2022). The myopia parameter estimated
by the model is close to the one in Corbae and D’Erasmo (2021), which generates the high

15This choice for the 5-basis point is associated with both the liquidity premium of deposits and their
term premium.

31



leverage in the banks’ balance sheet. Finally, the fixed operating cost corresponds to around
0.2% of average lending in a steady state.

Table 4: Endogenous Parameters

Parameter Name Value
α Interest rate sensitivity 181
ν Median return of project 2.05%
σ Manager Myopia 98%
ψ Fix Operation Cost 0.15%
ηω Std of asset shock 2.00%
n̄ New bank equity 3%

Notes: Parameters are chosen to match the moments in
Table 5.

The moments chosen align with each friction that banks face. For example, as banks operate
in imperfectly competitive markets, their lending rate reflects the elasticity of their loan
demand. Thus, I estimate the data equivalent to the markup and use its mean and standard
deviation as targeted moments.

Also, in the model, an essential factor to consider is the endogenous default decision of banks.
Due to the lack of insurance, long-term liabilities are exposed to default risk, and as a result,
their borrowing rates include default premiums. In contrast, the FDIC insures deposits, so
they do not necessarily face the same default risk.

I measure default risk by focusing on the difference between deposits and long-term liabilities
rates. Additionally, the failure rate of banks is another indicator of default risk.

Lastly, I focus on banks’ funding decisions. Banks can fund themselves using retained earn-
ings or debt. I target the average leverage and its standard deviation, as they provide insight
into the regulatory constraints that determine how much leverage banks can take A critical
aspect of the calibration is the share of long-term liabilities over total debt, corresponding to
the banks’ maturity. I target both the mean and standard deviation of long-term liabilities
share.

Table 5 presents the model fit compared to the data moments. Overall, the model does a
good job of matching the markups. The spread between long-term and deposit borrowing
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Table 5: Moments

Moment (all in percentage) Description Data Model
Mean SD Mean SD

Interest rates (quarterly)
E[p′Rℓ/Rborrow − 1] Markup 1.25 0.23 1.22 0.27
E[q−1

b − q−1
d ] Spread btwn deposits and long-term 0.33 0.22

Funding
E[ qbb

′

qbb′+qdd′
] Long-term Share of funding 39.46 16.52 35.94 15.23

E[ qbb
′+qdd

′

l
] Leverage 89.49 2.74 90.42 2.89

Risk
E[δ] Default rate 0.14 0.05

Notes: Moments are estimated using the full sample. Rborrow =
d′q−1

d +b′q−1
b

d′+b′ is the weighted
average borrowing rate. The data is from the U.S. Call Reports covering 2002 to 2023 at the
quarterly frequency. See Appendix B.3 for the definition of the variables.

rates is higher in the data, around eleven basis points. This discrepancy is due to the nine
basis point differences in my model’s default rate from the data. The model almost matches
the average leverage and its standard deviation. The model also has a good match for the
share of long-term funding and its standard deviation.

Now, I look at the untargeted moments regarding long-term funding. First, I check how
well my model matches the maturity distribution across banks and time. Figure 4 compares
the model implied maturity distribution with the distribution of the panel of commercial
banks. The model does an good job of matching the distribution of maturities. As explained
in Section 2, banks with a higher maturity are the ones to cut their lending less when
there is a positive monetary shock. Thus, matching the maturity distribution is crucial to
understanding the pass-through of monetary policy through banks.

An established empirical pattern is the positive association between long-term liabilities —
particularly non-core liabilities with is composed of large time deposits and other borrowed
money — and higher leverage, as documented by Hahm et al. (2013). To verify if my
model replicates this relationship, I plot the model-generated correlation between leverage
and the log of liability maturity, which serves as a proxy for long-term liabilities. As shown
in Figure 5, the model captures this positive correlation between leverage and long-term
liabilities, although with a four times steeper slope than observed empirically.
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Figure 4: Banks’ Distribution

Notes: The figure compares the maturity distribution implied by the model to that for the panel
of commercial banks. The data is from the U.S. Call Reports covering 2002-2023, using quarterly
data.

Figure 5: Scatter leverage and maturity

Notes: The figure plots the model-generated log maturity for each binned level of leverage. The
slope is obtained by regressing log maturity on leverage, controlling for size, non-performing loans,
return on assets, and liquidity, using bank and time-fixed effects. The data is from the U.S. Call
Reports covering 2003-2023 at the quarterly frequency. The slope is centered to match the model
level. Dot sizes represent the frequency of model generated moment.
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Figure 6: Scatter gross loan losses and maturity

Notes: The figure plots the model-generated log maturity for each grid point of gross loan losses.
The slope is obtained by regressing log maturity on gross loan losses, controlling for size leverage,
return on assets, and liquidity, using bank and time-fixed effects. The data is from the U.S. Call
Reports covering 2003-2023 at the quarterly frequency. The slope is centered to match the model
level. Dot sizes represent the frequency of model generated moment.

Lastly, I examine the relationship between liability maturity and loan losses. In sovereign
debt literature, long-term debt is often argued to serve as a hedge against adverse shocks
and rollover risk. Similarly, from a bank’s perspective, the persistence of loan losses suggests
that a bank experiencing losses today is likely to face them in the near future. If the hedging
rationale applies, banks might respond to potential losses by increasing their reliance on
long-term funding. Figure 6 shows the model-generated scatter plot between gross loan
losses and log maturity, with a linear regression line for comparison with empirical data.
The model aligns well with the observed positive correlation, suggesting that long-term debt
may indeed serve as a hedge against idiosyncratic risks.

Heterogeneous Effect of Maturity

The previous subsection showed that the model successfully replicates key cross-sectional
facts about the financing choices of U.S. commercial banks. The model thus provides an
appropriate quantitative framework for studying the role of liability maturity in the aggregate
and heterogeneous effects of monetary policy. I now demonstrate that the model can replicate
my empirical heterogeneous response.
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The economy is initially in the steady state and receives an unexpected shock of magnitude
25 basis points on Equation 12. In annual terms, this shock corresponds to an increase of
one percentage point in the Fed funds rate. For any subsequent period, the shock follows a
deterministic AR(1) process εt = ρϵεt−1, with parameter ρϵ equal to 0.5, eventually reverting
back to the steady state. 16 The asset adjustment parameter is set to χ = 250 to match
empirically estimated elasticity, and the model is simulated for 40 periods, sufficient for the
interest rate and the economy to converge to the initial steady state. χ is chosen to match
estimates for the loan demand elasticity.

In order to compare my model to the data, I simulate the differential response between
two groups generated by the model. The groups are selected by the setup in the empirical
exercise. I divide my model-generated bank distribution into two groups: (i) banks one
standard deviation above the mean maturity and (ii) the complementary set. In terms of
masses, this choice is close to the share above one standard deviation in the data, 13.24%,
while in the model, the mass is equal to 21.91%.

Because in the model, these banks with higher maturity are also the ones with more leverage
and riskier, this would imply different pre-trends before the monetary shock. Therefore, I
focus on the deviations from the group’s specific transition using steady-state policies. 17 I
then compare it to my baseline regression by calculating the difference in the cumulative
sum of each group’s deviations around their transition paths.

Figure 7 presents that the model can replicate the heterogeneous transmission of monetary
policy with respect to banks’ maturity. First, it matches the persistent discrepancies in
the data. Second, on level, it remains within the 95% confidence interval for the empirical
coefficients up to eight quarters after the shock.

16The parameter ρϵ comes from other papers in the literature.
17Notice that since the optimal policies in the steady state guarantee a unique bank distribution if the

time interval is large enough, both sub-groups would eventually converge to the same points.
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Figure 7: Heterogeneous Response to Contractionary Monetary Policy Shock

Notes: Heterogeneous impulse responses to a εm0 = 0.0025 innovation to the policy rate which
decays at rat ρm = 0.5. Groups are selected according to their maturity. Blue line is the data
point estimates. Dashed lines report 95% confidence interval. Computed with perfect foresight
transition in response to a series of unexpected innovations starting from the steady state.

The model can accurately replicate the empirical heterogeneity as it captures the correlation
between banks’ maturity choice and their financial frictions. Consistent with the data, banks
with longer-maturity debt tend to be more financially constrained. Importantly, these banks
benefit from a significant decline in the present value of their outstanding liabilities as their
future interest payments are locked in. This effect of long-term debt against interest rate
increases not only increases their equity but also alleviates their funding constraints. This
mitigation more than compensates for any increase in funding costs, allowing banks with a
greater proportion of long-term debt to increase their lending in response to monetary policy
shocks.

Since monetary shocks influence the overall structure of bank funding, see, for example,
Supera (2021), understanding the distribution of funding maturities becomes essential to
fully grasp how banks’ lending responses vary with interest rate changes and time. This
exercise highlights that banks’ funding structures — particularly liability maturity — play
a significant role in determining the extent of their responses to monetary policy.

Aggregate Transmission of Monetary Policy

Figure 8 shows the aggregate effects of this monetary policy shock. The model aggregate
lending semi-elasticity to the lending rate is around -2.48 using annualized interest rates,
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Figure 8: Aggregate Response to Contractionary Monetary Policy Shock

(a) Fed Funds Rate (b) Rates (c) Loans

Notes: Aggregate impulse responses to a εm0 = 0.0025 innovation to the policy rate which decays
at rat ρm = 0.5. Computed with perfect foresight transition in response to a series of unexpected
innovations starting from the steady state.

in line with the micro-level evidence for Commercial and Industrial Loans of Bassett et al.
(2014). 18 The bank-lending channel, as expressed by Kashyap and Stein (1995), occurs when
the pass-through for loan rates is higher than one. In this model, loan rates respond less than
one-to-one. The explanation for this incomplete pass-through is the increase in loan elasticity
whenever banks increase their lending rate, which arises from their monopolistic behavior.
The model’s slope between the monetary policy and loan rates is around 0.83, which aligns
with the incomplete pass-through monetary policy rate to lending rate of Scharfstein and
Sunderam (2016), Drechsler et al. (2021), and Wang et al. (2022). Lastly, because it is a
long-term debt, the rate increase is significantly larger than the deposit rate, which matches
their data behavior.

Counterfactual Analysis

To understand the overall impact of bank funding, I conduct two counterfactual analyses
to assess the effects of banking policies. The first analysis, linked to our initial exercise,
examines how monetary policy is transmitted when I eliminate the maturity channel of
monetary policy. Lastly, I analyze the effects of changes in capital regulation.

18For the Fed funds rate of the model, the semi-elasticity of loans is around −2.07. Jiménez et al. (2012)
and Ivashina et al. (2022) estimate a semi-elasticity of loans to the interbank rates of −1.39 and −1.88,
respectively.
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On the Transmission of Monetary Policy. To shed additional light on the role of
funding maturity in the transmission of monetary policy, I conduct a model experiment
where I eliminate long-term debt exogenously from the distribution of banks. To disentangle
the funding distribution effect, I re-run my benchmark, changing only the initial distribution
at the shock.

The exercise is done as follows. Let (p, n, b) be the bank state variable in the steady state.
Then, for each state I change its measure µ(p, n, b) to µ(p, ñ, 0) where the new cash-on-hand
equals

ñ = n− (1− λ)qb(p, n, b)b,

where qb(p, nj, bj) denotes the long-term pricing with regard to the bank’s optimal policies.
Intuitively, as the shock occurs, there won’t be any effect on banks’ equity coming from their
stock of outstanding debt. 19

Figure 9 shows the benchmark impulse response and its counterfactual counterpart. Mir-
roring my empirical exercise and the heterogeneous response, by eliminating the effect of
outstanding debt on my model, the decrease in lending is around one percentage point higher
in my counterfactual at the shock. Over the 40-quarter horizon, the cumulative impact on
the counterfactual experiment is 33% higher relative to the benchmark model. These results
highlight the importance of accessing the funding distribution of banks whenever conducting
monetary policy.

19Due to numerical approximation, the aggregate variables in this steady state do not precisely match
those in the benchmark steady state. To address this, I control the transition of this distribution while
assuming the steady state policy. The distribution converges to the steady state by the second period.
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Figure 9: Counterfactual of Response to Contractionary Monetary Policy Shock

(a) Deviations (b) Cumulative

Notes: Impulse responses to a εm0 = 0.0025 innovation to the policy rate, which decays at rat
ρm = 0.5 for benchmark and counterfactual distributions. In the counterfactual distribution, I
eliminate the decrease in outstanding debt. Computed with perfect foresight transition in response
to a series of unexpected innovations starting from the steady state.

On Capital Regulation. The model establishes a direct relationship between long-term
funding choices and banks’ leverage. Therefore, I argue that accounting for the heterogeneity
in bank funding is crucial when estimating the impact of regulatory changes on the banking
market. For this reason, I begin by studying the impact of capital regulation in my bench-
mark model. Similar to Corbae and D’Erasmo (2021), I set the new capital requirement for
banks at κ = 10% and compare both steady-state moments. I then compare the benchmark
implications with the alternative, where deposits are the only funding source, by setting the
maturity of long-term liabilities equal to one.

Table 6 presents the aggregate implications of a change in capital regulation in my bench-
mark model. The first result is that regulatory changes directly affect the lending market by
tightening the banks’ balance sheets. The tightening drives loan rates up and, thus, decreases
lending. Interestingly, banks’ average leverage does not decrease by the same magnitude as
the change in capital regulation. This occurs as other frictions, such as default risk, mainly
drive it, what Corbae and D’Erasmo (2021) calls capital buffers. In terms of the effective-
ness of generating stability, the policy is impactful, decreasing the default rate significantly.
Finally, because banks’ idiosyncratic risk and leverage drive maturity, such change causes an
overall shift towards deposit.
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Table 6: Counterfactual of Capital Regulation

κlow κhigh ∆
Loans 48.14 46.60 -3.78%
Loan rates (%) 2.09 2.12 0.03%
Leverage (%) 90.42 88.86 -1.72%
Default rate (%) 0.05 0.00 -0.05%
Maturity 1.69 1.21 -28%

Notes: Moments of steady-state equilibrium at different parameterization. κlow is the benchmark
capital requirement equal to 6%, and κhigh is the counterfactual requirement set to 10%.

To address the implications of funding structure on the banking policy, I compare my bench-
mark model counterfactual with the alternative where only deposits are used. 20 Table 7
compares the aggregate implications of the regulatory changes between the benchmark model
and a model with only deposits. Overall, when we account for banks’ funding structure, it
generates much more variations in aggregate outputs than the alternative specifications. In
particular, under my benchmark model, the capital requirement is much more effective in
decreasing banks’ default rates, which are mainly driven by the sharper decrease in leverage.

Table 7: Counterfactual of Capital Regulation Comparison

Benchmark Deposits-only Difference
Loans (%) -3.78 -2.54 -1.24
Loan rates (%) 0.03 0.03 0.0
Leverage (%) -1.72 -0.26 -1.46
Default rate (%) -0.05 -0.02 -0.03

Notes: Changes in moments of steady-state equilibrium at different parameterization. Deposits-
only denotes the parametrization of the model where λ is set to one, which implies that only
deposits will be used due to their lower cost.

20Table 8 presents the full comparison between these moments.
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6. Conclusion

In this paper, I have shown that banks’ maturity dampens lending response to monetary
policy. My argument had two components. First, I showed in the bank-level data that banks
with higher maturity in their liabilities are less responsive to monetary policy shocks, i.e.,
they decrease their lending relatively less. Second, I built a heterogeneous bank model with
default risk, market power, and capital regulation that is quantitatively consistent with these
empirical results. In the model, banks that tend to fund their lending with long-term debt
have either more leverage or face larger loan losses. I interpret these connections through the
financial frictions banks face. Due to capital requirements, banks must smooth their cash flow
over time, and this is done by funding their operations with long-term liabilities. Although
more financially constrained, these banks are less responsive to monetary policy because
they observe a decrease in the present value of outstanding debt stock. This alleviates
their leverage and allows them to increase their lending relatively more. Finally, in my
counterfactual analyses, I highlighted that accessing the distribution of funding structure is
crucial to understanding the aggregate effects of policies.

In summary, this paper emphasizes the critical role of banks’ funding structures, especially
the maturity of their liabilities, in influencing their responses to monetary policy. By in-
corporating balance sheet constraints and heterogeneity in funding choices, the model not
only replicates key empirical patterns but also provides new insights into the transmission
of monetary policy through the banking sector. These findings emphasize the importance of
considering the full range of banks’ funding sources when designing monetary policy.
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A. Appendix Additional Plots

Figure A.1
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Notes: The figure plots the composition of debt funding for the commercial banking sector. The
data is from the U.S. Call Reports covering 2003 to 2023 at the quarterly frequency.
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Figure A.2
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Notes: The figure plots the average borrowing rate by different liabilities and the Fed fund rate.
The average borrowing rate is measured by the interest expense divided by the quarterly average
stock of the liability. The data is from the U.S. Call Reports covering 2003 to 2023.

Figure A.3
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Notes: The figure plots the composition of long-term liabilities for the commercial banking sector.
The data is from the U.S. Call Reports covering 2003 to 2023 at the quarterly frequency.
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B. Empirical Appendix

B.1. Data Sources

Uniform Bank Performance Reports. Data from the Call reports is obtained from the
Uniform Bank Performance Reports, which is supplied by the FFIEC, for years between
2002 and 2023. The UBPR covers all FDIC-insured commercial banks, savings banks, and
savings associations. The dataset compiles quarterly call reports from each insured bank
and constructs standardized measurements for several bank-specific ratios. All definition are
provided by the UBPR. I follow the approach of Paul (2023) to aggregate bank subsidiaries at
the Bank Holding Company (BHC) level. The FFIEC’s National Information Center provides
the relationship table between BHC and bank subsidiaries. I only include institutions where
the average loan-to-asset ratio is above 25%.

Interest Rate Shocks. My measure of interest rate shock is the series of Jarociński and
Karadi (2020) due to their decomposition between information and monetary shock.

B.2. Variable Definitions

Bank Leverage. I define leverage as the ratio between total liabilities (UBPR2948) and
total assets (UBPR2170).

Markup. I define the markup as follows

markupj,t =
1 + Int. Rate Loan/400

1 + Int. Rate Expense/400
− 1

where I transform interest rate expense (UBPRE666) and loan interest rate (UBPRE686)
in per quarter rates.

Deposits. Deposits are defined as Demand, NOW, ATS, and MMDA and Deposits Below
Insurance Limit (UBPRK431) minus Deposits Below Insurance Limit (UBPRK426) plus
Federal Funds Purchased & Resales (UBPRF858).

Long-term Liabilities. I define long-term liabilities as time deposits plus other bor-
rowed money. To compute the long-term liabilities I use non-core liabilities (UBPRK445)
plus small non-brokered deposits (UBPRK426 minus UBPR2366) minus Federal Funds
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Purchased & Resales (UBPRF858).

Long-term share. I define the long-term share of liabilities as long-term liabilities divided
by total liabilities (UBPR2948).

Short term investments over total assets. To proxy for liquidity of the assets, I use
the variable short term investments over total assets (UBPRE589).

Return on assets. To proxy for return on assets I use the net income over total assets
(UBPRE013).

Gross Loan Losses. To capture banks’ credit risk, I use the gross loan losses (UBPRE390).

Non-perfoming Loans. I use the UBPR constructed non-performin loans (UBPR7414).

Interest Expense on Long-term Liabilities. I construct the interest expense on Long-
term liabilities by summing the expenses on time deposits (UBPRHR59) and Other Bor-
rowed Money (UBPRD479).

Quarterly average of Long-term Liabilities. To compute the borrowing rates on non-
reservable liabilities, I need to calculate their quarterly average stocks, analogous to the ap-
proach on the UBPR. For this, I sum the quarterly average of time deposits (UBPRHR65)
and Other Borrowed Money (UBPRD443).

Interest Expense on Deposits. I construct the interest expense on deposits by summing
the expenses savings accounts (UBPRD372) and transaction accounts (UBPRD513).

Quarterly average of Deposit Liabilities. To compute the borrowing rates on deposits,
I need to calculate their quarterly average stocks, analogous to the approach on the UBPR.
For this, I sum the quarterly average of savings accounts (RCONB563), Federal Funds
Purchased & Repos (UBPR3353), and transaction accounts (RCON3485).

Interest Rate on Liabilities. Interest rate on any type of liability is measured as the
interest rate expense, divided by the quarterly average stock.
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B.3. Empirical Robustness

As a robustness to my baseline specification, I re-estimate the Jordà (2005) under the fol-
lowing specification:

yj,t+1+h − yt = αj,h + αt,h + βhMj,t−1ε
m
t + γjεmt + Γ1Xj,t−1 + ej,t+h (A.1)

where γj is the bank-specific permanent heterogeneous response to monetary policy, the rest
is the same as the benchmark specification.

Figure B.1 shows the result of estimating the specification of Equation A.1. Similar to the
benchmark, my results are significant at the 5% significance level for the same interval.
Because maturity is not normalized, the point estimates are different.

Figure B.1: Heterogeneous Lending Response to Monetary Shock Alternative 1
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Notes: The figure presents the impulse response of a 1% monetary shock, constructed by Jarociński
and Karadi (2020), based on the local projection approach. The data is from the U.S. Call Reports
covering 2002 to 2023 at the quarterly frequency. Maturity is constructed by using time-to-
maturity brackets. The cumulative growth of loan growth is plotted with a 95 percent confidence
interval shown using standard errors clustered at the bank and time level.

To understand how the estimation of the within-bank variation and the permanent heteroge-
neous response (γj) are related, I re-estimate the projections under the following speciation:

yj,t+1+h − yt = αj,h + αt,h + βh(Mj,t−1 − M̄j)ε
m
t + γjεmt + Γ1Xj,t−1 + ej,t+h (A.2)

all the variables are the same as specified before.

Figure B.2 shows the result of estimating the specification of Equation A.2. Similar to the
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previous specification, my results do not change. This is expected because the estimation of
γj captures the bank-specific ex-ante heterogeneity. The different point estimates arise from
the standardization of the within-bank maturity differences.

Figure B.2: Heterogeneous Lending Response to Monetary Shock Alternative 2
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Notes: The figure presents the impulse response of a 1% monetary shock, constructed by Jarociński
and Karadi (2020), based on the local projection approach. The data is from the U.S. Call Reports
covering 2002 to 2023 at the quarterly frequency. Maturity is constructed by using time-to-
maturity brackets. The cumulative growth of loan growth is plotted with a 95 percent confidence
interval shown using standard errors clustered at the bank and time level.

Now, I check if my results are robust to the fed funds shock of Jarociński and Karadi (2020)
without the "purging" of the information shock. I re-estimate the projections under the
following speciation:

yj,t+1+h − yt = αj,h + αt,h + βh(Mj,t−1 − M̄j)ε
fed
t + Γ1Xj,t−1 + ej,t+h (A.3)

where εfed
t is the fed fund shock.

Figure B.3 shows the result of estimating the specification of Equation A.3. Similar to the
benchmark specification, the alternative of the interest rate shock behaves similarly to the
monetary shock, as identified by Jarociński and Karadi (2020).

I also check if the responses are the same if I use the variations of the fed funds rate instead.
Under this alternative, I re-estimate the projections under the following speciation:

yj,t+1+h − yt = αj,h + αt,h + βh(Mj,t−1 − M̄j)∆
fed
t + Γ1Xj,t−1 + ej,t+h (A.4)

52



Figure B.3: Heterogeneous Lending Response to Monetary Shock Alternative 3
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Notes: The figure presents the impulse response of a 1% monetary shock, constructed by Jarociński
and Karadi (2020), based on the local projection approach. The data is from the U.S. Call Reports
covering 2002 to 2023 at the quarterly frequency. Maturity is constructed by using time-to-
maturity brackets. The cumulative growth of loan growth is plotted with a 95 percent confidence
interval shown using standard errors clustered at the bank and time level.

where ∆fed
t is the variation of the fed funds rate. I instrumentalize the variation using the

monetary policy shocks.

Figure B.4 shows the result of estimating the specification of Equation A.4. Although with
smaller values, my results are significant at the 5% significance level for the same interval.
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Figure B.4: Heterogeneous Lending Response to Monetary Shock Alternative 4
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Notes: The figure presents the impulse response of a 1% monetary shock, constructed by Jarociński
and Karadi (2020), based on the local projection approach. The data is from the U.S. Call Reports
covering 2002 to 2023 at the quarterly frequency. Maturity is constructed by using time-to-
maturity brackets. The cumulative growth of loan growth is plotted with a 95 percent confidence
interval shown using standard errors clustered at the bank and time level.

Finally, I turn my attention to the maturity of assets and the maturity gap. The rationale for
this is to check if interest rate risk affects banks’ lending heterogeneously. The construction
for the variables follows English et al. (2018).

yj,t+1+h − yt = αj,h + αt,h + βh(M
k
j,t−1 − M̄k

j)ε
m
t + Γ1Xj,t−1 + ej,t+h (A.5)

where k ∈ {Assets,Gap} denotes if it is the maturity of the assets or the maturity gap
between assets and liabilities.

Figures B.5 and B.6 present the local projections for the heterogeneous response with respect
to the maturity of assets and the maturity gap, respectively. Unlike the maturity of liabilities,
neither presents a significant heterogeneous effect on bank lending. This might suggest that
the maturity mismatch, or for that matter, interest rate risk, is not statistically significant
enough to explain the heterogeneous response at the bank level.
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Figure B.5: Heterogeneous Lending Response to Monetary Shock Maturity of Assets
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Notes: The figure presents the impulse response of a 1% monetary shock, constructed by Jarociński
and Karadi (2020), based on the local projection approach. The data is from the U.S. Call Reports
covering 2002 to 2023 at the quarterly frequency. Maturity is constructed by using time-to-
maturity brackets. The cumulative growth of loan growth is plotted with a 95 percent confidence
interval shown using standard errors clustered at the bank and time level.

Figure B.6: Heterogeneous Lending Response to Monetary Shock Maturity Gap
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Notes: The figure presents the impulse response of a 1% monetary shock, constructed by Jarociński
and Karadi (2020), based on the local projection approach. The data is from the U.S. Call Reports
covering 2002 to 2023 at the quarterly frequency. Maturity is constructed by using time-to-
maturity brackets. The cumulative growth of loan growth is plotted with a 95 percent confidence
interval shown using standard errors clustered at the bank and time level.
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C. Quantitative Appendix

C.1. Algorithm for Steady State

The bank problem is solved using value function iteration (VFI) due to the existence of
two defaultable liabilities, which might cause indeterminacy. In the benchmark setup, I
have 101, 101, and 61 grids for the endogenous choice variables, Rℓ, d′, and b′, respectively.
Additionally, I use 7 grid points for p, 150 for n, and 5 for ω. After each iteration, I update
both liability prices to speed up the computational time. I stop the process if the distance
between iterations is below a tolerance of 10−5. Then, I store the policies for each grid point
of (p, n, b).

The algorithm to solve the steady-state mass of banks according to their variables (p, n, b)

follows Young (2010). Since the number of grid points for the endogenous variables for the
cash-on-hand (n) is significantly smaller than the number of grid points for Rℓ, d′, 150 versus
10,201, I generate a finer grid for the steady state n 30 times larger than the number of grid
points for the VFI, which I denote nfine. Therefore, my vector for the steady state distribution
is given by (p, nfine, b), which has a dimension of more than 2 million grid points. For each
grid in nfine I linear interpolate the policies from the VFI, doing the same interpolation for
the next period cash-on-hand. This allows me to approximate the steady distribution of
banks as if I were to compute (p,Rℓ, d, b, ω) without the computationally costly procedure
of getting the policies for these grid points. Finally, I compute a transition matrix for
(p, nfine, b), iterating with an initial guess for µ until the distribution converges.
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C.2. Counterfactual Appendix

Table 8: Counterfactual of Capital Regulation

Benchmark Deposits-only
κlow κhigh %∆ κlow κhigh %∆ Difference

Loans 48.09 46.27 -3.78 47.92 46.7 -2.54 -1.24
Loan rates (%) 2.09 2.12 0.03 2.10 2.13 0.03 0.00
Leverage (%) 89.91 88.19 -1.72 88.34 88.08 -0.26 -1.46
Default rate (%) 0.05 0.00 -0.05 0.05 0.03 -0.02 -0.03
Maturity 1.69 1.21 -28

Notes: Moments of steady-state equilibrium at different parameterization. κlow is the benchmark
capital requirement equal to 6%, and κhigh is the counterfactual requirement is set to 10%.
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